This article was downloaded by:

On: 28 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

3-BROMO-1,1,1-TRIFLUORO-PROPANE-2-OXIME AND TRIETHYLPHOSPHITE

Heike Hunda; Gerd-Volker Röschenthalera

^a Institut für Anorganische und Physikalische Chemie, Universität Bremen, Bremen, Bundesrepublik Deutschland

To cite this Article Hund, Heike and Röschenthaler, Gerd-Volker(1996) '3-BROMO-1,1,1-TRIFLUORO-PROPANE-2-OXIME AND TRIETHYLPHOSPHITE', Phosphorus, Sulfur, and Silicon and the Related Elements, 119: 1, 87 — 91

To link to this Article: DOI: 10.1080/10426509608043467

URL: http://dx.doi.org/10.1080/10426509608043467

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

3-BROMO-1,1,1-TRIFLUORO-PROPANE-2-OXIME AND TRIETHYLPHOSPHITE

HEIKE HUND and GERD-VOLKER RÖSCHENTHALER*

Institut für Anorganische und Physikalische Chemie, Universität Bremen, Leobener Strasse, D-28334 Bremen, Bundesrepublik Deutschland

(Received 3 September 1996)

Triethylphosphite (1) and 3-bromo-1,1,1-trifluoro-propane-2-oxime (2) reacted in a PERKOW type reaction to yield [N-hydroxy-N-(1-trifluoromethyl-ethenyl)]amido diethylphosphate (3) which added water in a MARKOVNIKOV manner across the double bond to form [N-hydroxy-N-(1-trifluoromethyl-1-hydroxy-ethyl)]amido diethylphosphate (4). Abstraction of water using bis(cyclohexyl)carbodiimide gave the corresponding N-phosphorylated 3-methyl-3-trifluoromethyl-oxaziridine 5, whose constitutional isomer, the iminophosphate 6 was prepared from chlorodiethylphosphate (7) and 1,1,1-trifluoro-propane-2-oxime (8). Compound 6 was not available from a possible rearrangement of compound 3 under basic condition.

Keywords: 3-Bromo-1,1,1-trifluoro-propane-2-oxime; [N-hydroxy-N-(1-trifluoromethyl-ethenyl)]amido diethylphosphate; [N-hydroxy-N-(1-trifluoromethyl-1-hydroxyethyl)]amido diethylphosphate; 2-diethylphosphato-3-methyl-3-trifluoromethyl-oxaziridine; 1,1,1-trifluoro-propane-2-imino-diethylphosphate

INTRODUCTION

3-Bromo-1,1,1-trifluoro-propane-2-oxime (1) is a versatile precursor for the synthesis of 1,2-oxazines via a nitroso alkene. Trialkylphophites could react with α -bromo ketones to give either ARBUZOV (phosphonate formation) or PERKOW pathway products (enol phosphate formation) and alkyl bromide. In the case of 3-bromo-1,1,1-trifluoropropanone^{3,4} and triethylphosphite the respective enol phosphate was obtained. Continuing our investigation of diacetyl-dioxime with phosphites⁵ and hexaalkylphosphorus(III) amides⁶ we describe here the interaction of triethylphosphite (2) with oxime 1.

^{*}Corresponding author.

RESULTS AND DISCUSSION

The straightforward reaction of 3-bromo-1,1,1-trifluoro-propane-2-oxime (1) and triethylphosphite (2) produced [N-hydroxy-N-(1-trifluoromethyl-ethenyl)]amido diethylphosphate (3), which added water across the C=C bond to form [N-hydroxy-N-(1-trifluoromethyl-1-hydroxy-ethyl)]amido-diethylphosphate (4). Successfully water could be abstracted using bis(cyclohexyl)carbodiimide furnishing 2-diethylphosphato-3-methyl-3-trifluoromethyl-oxaziridine (5). Since amidophosphates 3 and 5 are constitutional isomers, a third one, namely 1,1,1-trifluoro-propane-2-imino-diethylphosphate (6), was accessible from chlorodiethylphosphate (7) and 1,1,1-trifluoropropane-2-oxime⁷ (8) (see Scheme 1). Besides compound 3 all new moisture-sensitive substances were liquids.

The 1 H, 19 F, 31 P and 13 C NMR data (see Table I and II) support the constitution of the new compounds. The δ_{P} values are in the expected range. Additional confirmation is given by the 13 C NMR parameters. 9,10 The chiral center in compound 4 has no significant effect on the ethoxy groups at phosphorus.

EXPERIMENTAL

The appropriate precautions in handling moisture-sensitive compounds were observed throughout this work. Elemental analyses were undertaken by Mikroanalytisches Laboratorium Beller, Göttingen, Germany. Mass spectra (EI, 70 eV) were carried out on a Varian MAT CH-7A instrument. NMR spectra were ob-

EEO DEL F₃C
$$\rightarrow$$
 BrH₂C \rightarrow N = OH \rightarrow EEB \rightarrow EEO \rightarrow H₂O \rightarrow EEO \rightarrow CF₃ \rightarrow EEO \rightarrow CH₃ \rightarrow CH₃ \rightarrow EEO \rightarrow CH₃ \rightarrow CH₃ \rightarrow EEO \rightarrow CH₃ \rightarrow CH₃ \rightarrow CH₃ \rightarrow CH₄O \rightarrow CH₃ \rightarrow CH₄O \rightarrow CH₅O \rightarrow CH₅O \rightarrow CF₃ \rightarrow CH₅O \rightarrow

Compound	δ_{H}^{a}				$-\delta_F^{\ a}$	δ_{p}^{a}
	$CH_3CH_2 \ (^3J_{HH})$	$CH_2 \choose {}^3J_{PH}$	NOH	СН3	$_{(^4J_{PF})}^{CF_3}$	
3 ^b	1.2 (7.4)	4.2 (9.3)	6.5		-69.3 (2.3)	22.9
4 ^c	1.2 (6.2)	4.0 (7.4)	6.6	2.1	-72.6 (2.8)	20.5
5	1.2 (6.2)	3.9 (6.8)		1.8 ^d	-76.3 (2.3)	17.5
6	0.9 (6.8)	3.9 (7.3)		1.8e	-70.4	4.8

TABLE I ¹H, ¹⁹F and ³¹P NMR data of compounds 3-6 (J values are given in Hz)

tained on a Bruker AC 80 instrument operating at 80.13 MHz (¹H, internal standard TMS), at 75.39 MHz (¹⁹F, internal standard CCl₂F), at 32.44 MHz (³¹P, external standard 85% H₂PO₄) and at 20.15 MHz (¹³C, external Standard TMS). Compounds 2 and 8 were prepared according to literature procedures. 1,7

[N-Hydroxy-N-(1-Trifluoromethyl-Ethenyl)]Amido Diethylphosphate (3)

Oxime 2 (2.06 g, 10 mmol) in 20 ml of diethylether and 1.66 g (10 mmol) of 1 were allowed to react for 8 h at ambient temperature. After fractional distillation 2.54 g (97%) of 3 (b. p. 45°C/0.01 Torr) were obtained. MS (140°C), m/z (%):

TABLE II ¹³C NMR data of compounds 3-6 (δ_c highfield of TMS was given negative sign, J values were measured in Hz)

Compound	$CH_3CH_2 \ (^3J_{PC})$	$CH_3CH_2 \ (^2J_{PC})$	$CH_{3} = (^{3}J_{CP},^{-3}J_{PC})$	$CN \atop (^2J_{CP}^{2}J_{PC}^{})$	$CF_{\stackrel{3}{\beta}}I_{PC})$	
3ª	31.4	58.4		146.1	120.5	
	(6.8)	(9.6)		(32.0, 9.4)	(284.3, 6.8)	
4	31.4	58.3	15.2	29.4	120.8	
	(7.2)	(9.5)	(22.7, 6.4)	(32.3, 8.9)	(286.3, 7.5)	
5	31.4	53.5	15.0	72.3	121.0	
	(6.9)	(12.0)	(19.0, 6.5)	(32.2, 6.0)	(285.7, 6.3)	
6	31.2	57.4	15.3	136.4	120.9	
	(6.8)	(9.5)	(21.3, -)	(31.6, -)	(287.3, -)	

 $^{^{}a}\delta_{c} = 116.7 \ (=CH_{2}, ^{3}J_{CE}, = 23.0, ^{3}J_{PC} = 6.5).$

^aHighfield shifts from TMS, CCl₃F and 85% H₃PO₄ were given negative signs. ^b $\delta_{\rm H}=2.9~(={\rm CH_2},~{\rm 1H},~cis~{\rm to~CF_3},~^2{\rm J}_{\rm HH}=4.2),~3.4~(={\rm CH_2},~{\rm 1H},~trans~{\rm to~CF_3},~^4{\rm J}_{\rm FH}=3.0).$ ^c $\delta_{\rm H}=6.3~({\rm C-OH}).$

 $^{^{}d4}J_{FH} = 1.0.$ $^{e4}J_{PH} = 1.3).$

263 (M⁺, 3), 248 (M⁺—CH₃, 6), 194 (M⁺—CF₃, 53), 137 ((C₂H₅O)₂PO⁺, 100), 126 (M⁺—(C₂H₅O)₂PO, 28), 121 ((C₂H₅O)₂P⁺, 65), 112 (CF₃CNOH⁺, 20) 95 (CF₃CCH₂⁺, 11) and other fragments.

C₇H₁₃F₃NO₄P (263.15) Calcd. C 31.95 H 4.98 F 21.66 P 11.77% Found C 32.34 H 5.13 F 20.90 P 11.40%

[N-Hydroxy-N-(1-Trifluoromethyl-1-Hydroxy-ethyl)]Amido Diethylphosphate (4)

Amidophosphate 3 (2.63 g, 10 mmol) in 20 ml of diethylether and 0.18 g (10 mmol) of water were allowed to react for 1 d at ambient temperature. After removing the solvent 2.25 g (80%) of 4 (m. p. 33°C) were obtained. MS (140°C), m/z (%): 281 (M⁺, 7), 212 (M⁺—CF₃, 6), 109 (C₂H₅OP(O)OH⁺, 100), 98 (CF₃COH⁺, 15), 69 (CF₃⁺, 2) and other fragments.

C₇H₁₅F₃NO₅P (281.17) Calcd. C 29.90 H 5.38 F 20.27 P 11.02% Found C 30.79 H 5.80 F 21.20 P 11.40%

2-Diethylphosphato-3-Methyl-3-Trifluoromethyl-Oxaziridine (5)

N,N-Dicyclohexylcarbodiimide (1.65 g, 8 mmol) was added to 2.25 g (8 mmol) of 4 in 15 ml diethylether at 0°C. After 12 h at ambient temperature the white precipitate was filtered off. The remaining solution was fractionally distilled, which gave 1.95 g (93%) of 5 (b. p. 68°C/0.01 Torr). MS (140°C), m/z (%): 263 (M⁺, 45), 234 (M⁺—C₂H₅, 35), 205 (M⁺—2 C₂H₅, 48), 109 (C₂H₅OP(O)OH⁺, 100), 112 (CF₃CNOH⁺, 20) and other fragments.

C₇H₁₃F₃NO₄P (263.15) Calcd. C 31.95 H 4.98 F 21.66 P 11.77% Found C 31.57 H 4.84 F 21.80 P 11.63%

1,1,1-Trifluoro-Propane-2-Imino Diethylphosphate (6)

Chlorodiethylphosphate (7) (1.72 g, 10 mmol), 0.71 g (10 mmol) of triethylamine and 1.27 g (10 mmol) of 8 were allowed to react for 1 d at ambient temperature. After separating the solution from triethylammonium chloride and fractional distillation 2.48 g (94%) of 6 (b. p. 45°C/0.01 Torr) were obtained.

MS (140°C), m/z (%): 263 (M⁺, 10), 248 (M⁺—CH₃, 12), 194 (M⁺—CF₃, 39), 137 ((C₂H₅O)₂PO⁺, 100), 126 (M⁺—(C₂H₅O)₂PO, 40), 121 ((C₂H₅O)₂P⁺, 45) and other fragments.

C₇H₁₃F₃NO₄P (263.15) Calcd. C 31.95 H 4.98 F 21.66 P 11.77% Found C 32.10 H 5.16 F 21.50 P 11.35%

Acknowledgment

Financial support by the Fonds der Chemischen Industrie is gratefully acknowledged.

References

- [1] R. Zimmer and H.-U. Reissig, J. Org. Chem., 57, 339, (1992).
- [2] B. A. Arbusov, Pure & Appl. Chem., 9, 307, (1964).
- [3] E. T. McBee and T. M. Burton, J. Am. Chem. Soc., 74, 3902, (1952).
- [4] E. Cherbuliez, G. Weber and J. Rabinowitz, Helv. Chim. Acta, 48, 1423, (1965).
- [5] H. Hund and G.-V. Röschenthaler, Phosphorus, Sulfur & Silicon, 62, 71, (1991).
- [6] H. Hund and G.-V. Röschenthaler, Phosphorus, Sulfur & Silicon, 75, 209, (1993).
- [7] R. A. Shepard and P. L. Sciaraffa, J. Org. Chem., 31, 964 (1966).
- [8] S. Berger, S. Braun and H.-O. Kalinowski, ³¹P-NMR-Spektroskopie (Georg Thieme Verlag, Stuttgart, Germany, 1993), pp. 52-58.
- [9] H.-O. Kalinowski, S. Berger and S. Braun, ¹³C-NMR-Spektroskopie (Georg Thieme Verlag, New York, 1984), pp. 530.
- [10] S. D. Cook, T. A. Hamor, W. B. Jennings, A. A. Tebbutt, S. Watson and D. Boyd, J. Chem. Soc. Perkin Trans., 1281, (1991).